Clark TEEPLE

Postdoctoral Fellow | Harvard Microrobotics Lab, Harvard University

Scbteeple.com Sithub.com/cbteeple Ocbteeple@gmail.com Sased in Somerville, MA, USA

I am a roboticist with experience designing "gentle" end effectors, and a passion for mechatronics and system integration. I am interested in applying my creative engineering mindset to solve impactful, real-world problems.

EDUCATION

Nov. 2021	 PhD in Engineering Sciences (Robotics) – Harvard University, Cambridge, MA > Dissertation Title - Design Principles for Improving Precision and Dexterity of Soft Robotic Hands > NSF Graduate Research Fellow
May 2018	MS in Engineering Sciences (Robotics) – Harvard University, Cambridge, MA
May 2016	 BSE in Mechanical Engineering – University of Michigan, Ann Arbor, MI 3.90 GPA, Summa Cum Laude
Skills	
 Mechanical Des	ign Fusion 360, Solidworks, OnShape, Eagle CAD (Electronics), Basic Machining, 3D Printing,

	Laser Cutting, Design for Manufacturing
Programming	Python (including NumPy, SciPy, and Pandas), C++ (embedded), MATLAB, Linux
Robotics Frameworks	Robot Operating System (ROS), Movelt!, PyBullet Physics, UR5e Robot Arm

Experience

2016-2021	 PhD Candidate HARVARD MICROROBOTICS LAB - Harvard University, Cambridge, MA Advisor : Prof. Robert Wood > Led the development of a dexterous soft robotic hand platform capable of in-hand manipulation, and developed relevant performance metrics to quantify in-hand manipulation. > Investigated several factors in the design of soft robotic hands (<i>friction, compliance, finger arrangement, etc.</i>) leading to enhanced capabilities in both grasping and in-hand manipulation. > Improved the precision grasping capabilities of soft grippers by developing finger designs that fully-utilize passive compliance. > Studied the role of gripper compliance in manipulating fabrics and other thin, flexible objects. > Developed Ctrl-P , a modular, high-bandwidth, smooth pressure control system for soft robots. This consists of a custom PCB, firmware, and ROS package, and is actively supporting my own research projects along with and several others. > Developed calibration protocols for building and controlling physically-accurate soft robots in simulation as part of the development team for the SoMo (Soft Motion) Simulation Framework . > Built an integrated light intensity measurement system for soft optical sensors consisting of a custom PCB, firmware, and MATLAB control interface. > Supervised two Masters theses, and three undergraduate projects.
	Mechanical Design Simulation Embedded Programming System Integration ROS Python C++
2015–2016	 Undergraduate Research Assisant VIBRATION AND ACOUSTICS LABORATORY : MICROSYSTEMS – University of Michigan, Ann Arbor, MI Advisor : Prof. Kenn Oldham Studied locomotion of small-scale legged robots with multiple sets of high-frequency elastic legs. Designed, built, and characterized several robot prototypes using 3D printing. Contributed to a design-invariant dynamic model of leg and body behavior. Mechanical Design (3D Printing) Dynamic Modeling
Summer 2015	 Engineering Intern MIT LINCOLN LABORATORY – Lexington, MA > Developed control systems and a user interface to automate the operation of a mobile mass spectrometry platform. This platform was used to improve training of canines for explosives detection. System Integration UI/UX Design LabVIEW

✤ Mentorship & Teaching

2021-2022	Ť	Advisor/Supervisor – Undergraduate Senior Thesis, Harvard Microrobotics Lab
2020-2021	Ť	Advisor/Supervisor – Two Undergraduate Research Projects, Harvard Microrobotics Lab
2019-2020	Ť	Advisor/Supervisor – Visiting Masters Student Thesis (EPFL), Harvard Microrobotics Lab
2018-2019	Ť	Advisor/Supervisor – Visiting Masters Student Thesis (ETH-Z), Harvard Microrobotics Lab
Fall 2018	A	Teaching Fellow – ES51 - Computer Aided Machine Design, Harvard University

SELECTED PUBLICATIONS

C.B. Teeple, J. Werfel, and R.J. Wood, "**Multi-Dimensional Compliance of Soft Grippers Enables Gentle Interaction** with Thin, Flexible Objects", *IEEE International Conference on Robotics and Automation (ICRA)*, 2022 (In-Review)

C.B. Teeple, B. Aktaş, M.C. Yuen, G.R. Kim, R.D. Howe, and R.J. Wood, "Controlling Palm-Object Interactions via Friction for Enhanced In-Hand Manipulation", *IEEE Robotics and Automation Letters*, 2022

C.B. Teeple, R.C. St. Louis, M.A. Graule, and R.J. Wood, "The Role of Digit Arrangement in Soft Robotic In-Hand Manipulation", IEEE International Conference on Intelligent Robots and Systems (IROS), 2021

M.A. Graule, C.B. Teeple, T.P. McCarthy, G.R Kim, R.C. St. Louis, and R.J. Wood, "SoMo : Fast and Accurate Simulations of Continuum Robots in Complex Environments", *IEEE International Conference on Intelligent Robots and Systems (IROS)*, 2021

C.B. Teeple, G.R. Kim, M.A. Graule, and R.J. Wood, "An Active Palm Enhances Dexterity of Soft Robotic In-Hand Manipulation", IEEE International Conference on Robotics and Automation (ICRA), 2021

C.B. Teeple, S. Abondance, and R.J. Wood, "A Dexterous Soft Robotic Hand for Delicate In-Hand Manipulation", *Set Explosition Content Set Content Set*

C.B. Teeple, T.N. Koutros, M.A. Graule, and R.J. Wood, "Multi-Segment Soft Robotic Fingers Enable Robust Precision Grasping", International Journal of Robotics Research, 2020